
Statistical Tests for 
Comparing Classifiers

Presented at Robuddies on March 18, 2010
by Sancho McCann

Friday, March 19, 2010



Outline

• Some background on comparing two 
classifiers (Dietterich, 1998)

• Comparing multiple classifiers on multiple 
data sets (Demsar, 2006)
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The question

Given two learning algorithms A and B, and a 
small data set S, is there a difference in their 
classification performance when trained on 
data sets of the same size as S?

The null hypothesis: there is no difference in 
the performance of the two algorithms.
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Possible errors

• Type I error: false positive, reject the null 
hypothesis when the null hypothesis is true

• Type II error: false negative, fail to reject 
the null hypothesis when it is false
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A good test

• A good test procedure will not be fooled 
by differences that are observed by chance 
(low type I error)

• A good test procedure will detect true 
differences if they exist (high power, low 
type II error)
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Sources of variation

1. Random variation of the test set

2. Random variation due to selection of 
training data

3. Internal randomness of the learning 
algorithm

4. Random classification error

Friday, March 19, 2010



Sources of variation

Dealing with 1, 4: the 
procedure must account 
for the size of the test set 
and consequences of 
changes

Dealing with 2, 3: the 
algorithm must be 
executed multiple times 
and measure the variation 
in the performance

1. Random variation of the test set

2. Random variation due to selection of training data

3. Internal randomness of the learning algorithm

4. Random classification error
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5 tests

• McNemar’s test

• Test for the difference of two proportions

• Resampled paired t-test

• k-fold cross-validated paired t-test

• 5x2 c.v. paired t-test
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McNemar’s test
Split the available data training testing

Run algorithms A and B 
on the training data

To get classifiers fA and fB fA fB

Test fA and fB on the test data,
record results in a table:

n00 = # misclassified by both n01 = # misclassified by A, not B

n10 = # misclassified by B, not A n11 = # misclassified by neither
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McNemar’s test
n00 = # misclassified by both n01 = # misclassified by A, not B

n10 = # misclassified by B, not A n11 = # misclassified by neither

Under the null hypothesis, the error rates are the same.  The expected counts are:

n00 (n01 + n10)/2

(n01 + n10)/2 n11

χ2 =
(|n01 − n10|− 1)2

n01 + n10

This statistic is distributed as chi-
squared with 1 degree of freedom:
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Resampled t-test
Randomly split the data into train 
and test for each trial i (30 trials)

Run algorithms A and B 
on the training data

To get classifiers fA and fB fA(i) fB(i)

pi
A pi

Band       are the misclassification rates during trial i, then

p(i) = p(i)
A − p(i)

Bassume are drawn independently from a normal distribution

t =
p ·
√

n√Pn
i=1(p

(i)−p)2

n−1

Then run a Student’s t-test 
by computing:
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k-fold c.v. paired t-test

Divide the data into k disjoint sets 
of equal size

Conduct k trials, using a different 
set as the test set and the 

remainder as training ...

Like the resampled t-test, but differs in how the splits are prescribed

Test sets are now independent between trials, but 
there is still a lot of overlap between training sets.
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5x2 c.v. paired t-test
Perform 5 runs of 2-fold cross validation

testingtraining

trainingtesting

Train A and B on 1st fold, test on 2nd to get

Train A and B on 2nd fold, test on 1st to get

Split the data into two folds

p(1)
A , p(1)

B

p(2)
A , p(2)

B

fold 1 fold 2

p(2) = p(2)
A − p(2)

B

This gives two estimates 
of the difference and an 

estimated variance

s2 = (p(1) − p)2 + (p(2) − p)2 x 5

p(1) = p(1)
A − p(1)

B
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5x2 c.v. paired t-test

t̃ =
p(1)
1√

1
5

∑5
i=1 s2

i

Under the null hypothesis, this 
test statistic has approximately 
a t distribution with 5 degrees 
of freedom
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Recommendations

• The uncorrected resampled t-test, and the 
t-test over cross validation folds have 
elevated type I error rates

• If you can afford to run an algorithm 10 
times, use the 5x2 c.v. test

• If you can only run an algorithm once, use 
McNemar’s test
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Since 1998

• 5x2 c.v. test and McNemar’s test replacing 
t-tests

• 5x2 c.v. test criticized as not replicable 
enough

• Corrected versions of the resampled t-test 
that account for overlap have been 
proposed (Nadeau and Bengio)
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Comparing across 
multiple data sets

Friday, March 19, 2010



The context
Tested k algorithms on N data sets, letting   
be the score of the jth algorithm on the ith 
dataset

cj
i
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2-classifiers,        
multiple data sets

• Averaging over data sets

• Paired t-test

• Wilcoxon signed ranks test

• Counts sign test
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Wilcoxon signed ranks test
Rank differences by their 
absolute value

Let R+ be the sum of the 
ranks where algorithm 2 was 
best

Let R- be the sum of the 
ranks where algorithm 1 was 
best

Let T be min(R+, R-)

There’s a table for less 
than 25 datasets, or use:

z =
T − 1

4N(N + 1)
√

1
24N(N + 1)(2N + 1)
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Counts-of-wins sign test
Count the number of data sets on which an 
algorithm is an overall winner.

Under the null hypothesis, each algorithm should 
win on N/2 of the N data sets.

The number of wins is distributed according to a 
binomial distribution and critical values can be 
looked up in a table.
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Counts-of-wins sign test
Critical values

This is a weaker (lower power) test 
than the Wilcoxon signed ranks test.

For larger numbers of data sets, the number 
of wins is distributed with a normal 
distribution: N (N/2,

√
N/2)
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Multiple classifiers, 
multiple data sets

• Cautions

• Context

• ANOVA

• Friedman Test
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Cautions

• The two-classifier tests are not suited to 
comparing multiple classifiers

• Doing all pair-wise comparisons and simply 
listing significant differences elevates the 
rate of type I error

• Need to control family-wise error rate 
across all hypothesis tests
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Context

Null hypothesis: all classifiers perform the same 
and the observed differences are merely random
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Friedman Test

• Test the null hypothesis

• If the null-hypothesis is rejected, proceed 
with post-hoc tests to check for differences 
between individual classifiers
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Friedman Test

Compute the average rank for each classifier
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Friedman Test

Compute the test statistic and test the null hypothesis

χ2
F =

12N

k(k + 1)




k∑

j=1

R2
j −

k(k + 1)2

4





FF =
(N − 1)χ2

F

N(k − 1)− χ2
F

This is distributed with an F-distribution 
with k-1 and (k-1)(N-1) degrees of freedom
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Post-hoc tests

• Either test each classifier against each other 
classifier (     hypotheses), or

• Test each classifier against a baseline or 
control classifier (k-1 hypotheses)

(
k

2

)
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Post-hoc test: each vs each
• The Nemenyi test compares all classifiers 

to each other to test for significant 
differences

• Two classifiers have significantly different 
performance if their average ranks differ by 
at least the critical difference

CD = qα

√
k(k + 1)

6N
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Post-hoc tests: vs control

• When comparing k-1 of the classifiers against a control, 
or baseline classifier, other methods are more powerful

• The Bonferroni-Dunn test adjusts the target    by dividing 
by the number of comparisons made: (k-1)

• Easiest way to do this is compute the Nemenyi CD, but 
use different 

CD = qα

√
k(k + 1)

6N

qα

α
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Post-hoc tests: vs control

Multi-step methods compute a p-value for each 
hypothesis and multiple adjustments of critical 
values.

The test statistic for comparing the ith and jth 
classifier is:

z =
Ri −Rj√

k(k+1)
6N

This has a standard normal distribution, so a p-value 
can be determined.
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Post-hoc tests: vs control

i hypothesis

1 D == A 0.016 0.017

2 B == A 0.019 0.025

3 C == A 0.607 0.050

Order hypotheses by their p-values and compare against an 
adjusted alpha.

Holm’s method steps down, rejecting until first failure

Hochberg’s method steps up, finding first rejection, then 
rejecting all null hypotheses with smaller p-values

α/(k − i)p

reject

reject

no reject
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Friedman Summary
Compute average ranks

Compute       to test null hypothesis Done

Proceed with post-hoc tests

Nemenyi critical 
difference test

Reject

No reject

Bonferonni-Dunn 
critical difference test

Multi-step Holm

Multi-step Hochberg

or,

or,

Each vs each Each vs baseline

FF
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Example
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χ2
F =

12N

k(k + 1)




k∑

j=1

R2
j −

k(k + 1)2

4



 = 9.28 FF =
(N − 1)χ2

F

N(k − 1)− χ2
F

= 3.69

The critical value of F(3,39) at a = 0.05 is 2.85, so we reject the null hypothesis

Example
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The Nemenyi test at a = 0.05 for 4 classifiers has a CD of

CD = q0.05

√
k(k + 1)

6N
= 2.569

√
2 · 5
6 · 14

= 1.25

This post-hoc test isn’t powerful enough to detect any significant differences

The Nemenyi test at a = 0.10 for 4 classifiers has a CD of

C4.5 is significantly worse than C4.5+m and C4.5+m+cf.
The data is not sufficient to reach any conclusion regarding C4.5+cf

CD = q0.10

√
k(k + 1)

6N
= 2.291

√
2 · 5
6 · 14

= 1.12
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Test modifications 
against control

Both Holm (step down) and Hochberg (step up) methods 
fail to reject the last null hypothesis, but reject the others
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Experimental results 
from paper
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Recommendations

• Non-parametric tests preferred

• For 2 classifiers across multiple data sets, 
prefer the Wilcoxon signed ranks test

• For multiple classifiers across multiple data 
sets, prefer the Friedman test and 
associated post-hoc tests
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Case Recommendation

1 data set, 2 classifiers McNemnar, 5x2 c.v., or a corrected version 
of the resampled t-test

Multiple data sets, 2 classifiers Wilcoxon signed rank test

Multiple data sets, multiple 
classifiers

Friedman test and associated post-hoc 
tests

Summary
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